
Dice Probabilities 02-26-16
N. T. Gladd

Initialization:  Be  sure  the  files  NTGStylesheet2.nb  and  NTGUtilityFunctions.m  is  are  in  the  same

directory as that from which this notebook was loaded. Then execute the cell immediately below by

mousing left on the cell bar to the right of that cell and then typing “shift” + “enter”. Respond “Yes” in

response to the query to evaluate initialization cells.

SetDirectory[NotebookDirectory[]];

(* set directory where source files are located *)

SetOptions[EvaluationNotebook[], (* load the StyleSheet *)

StyleDefinitions → Get["NTGStylesheet2.nb"]];

Get["NTGUtilityFunctions.m"]; (* Load utilities package *)

Purpose
I  develop some experience for using the new Mathematica  probability capabilities by using them to

solve problems involving dice. Some of these problems are classic. Some I found on the web — A

Collection  of  Dice  Problems (v  1-2-2010,  Matthew M.  Conroy.  Of course,  there  are  many ways to

approach and solve these problems. I tend to use approaches that make use of Mathematica capabili-

ties. 

Probability sum of dice will be less than certain amount

What is the probability that the total of the face values of two dice will be 6 or less?

Model the die throw with a uniform distribution

Clear[FairDie];

FairDie = DiscreteUniformDistribution[{1, 6}];

The required probability is

Probability[d1 + d2 ≤ 6, {d1  FairDie, d2  FairDie}]

5

12

The general result is also available
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Probability[d1 + d2 ≤ n, {d1  FairDie, d2  FairDie}]

1

36
2 ≤ n < 3

1

12
3 ≤ n < 4

1

6
4 ≤ n < 5

5

18
5 ≤ n < 6

5

12
6 ≤ n < 7

7

12
7 ≤ n < 8

13

18
8 ≤ n < 9

5

6
9 ≤ n < 10

11

12
10 ≤ n < 11

35

36
11 ≤ n < 12

1 n ≥ 12
0 True

I simulate so as to have independent confirmation of results.

Module[{nTimes = 1000, f, theory, theoryList, lab},

theory = Probability[d1 + d2 ≤ n, {d1  FairDie, d2  FairDie}];

theoryList = Transpose[{Range[2, 12], theory〚1〛〚All, 1〛}];

f = EmpiricalDistribution[

Table[RandomVariate[FairDie] + RandomVariate[FairDie], {nTimes}]];

lab = Stl@StringForm[

"Comparison of theoretical CDF (red) with simulated CDF\n simulation size = ``",

nTimes];

DiscretePlot[CDF[f, n], {n, 1, 12}, ExtentSize → Right,

Epilog → {PointSize[0.015], Red, Point /@ theoryList},

PlotLabel → lab, PlotStyle → Black]]

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

Comparison of theoretical CDF (red) with simulated CDF

simulation size = 1000
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Expected time for a six to appear

Suppose the target number during a sequence of dice rolls is 6. On the first roll, 6 will occur with proba-

bility 1
6
 and some other number with probability 5

6
. The probability  that 6 will occur on a particular roll is

(for p = 1/6 and q = 5/6 = 1 - p)

1    p

2    q p

3    q2 p

...

k    qk-1p

This sequence forms a geometric distribution

Modulep = 1  6, fDist, results,

fDist = GeometricDistribution[p];

results = Table[{i, Probability[x ≤ i, x  fDist] // N}, {i, 0, 10}];

LGrid[results, "CDF[first occurrence of 6]"]

CDF[first occurrence of 6]

0 0.166667
1 0.305556
2 0.421296
3 0.517747
4 0.598122
5 0.665102
6 0.720918
7 0.767432
8 0.806193
9 0.838494

10 0.865412

Check against simulation
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Modulep = 1  6, nTrials = 1000,

nRolls = 50, results, fFirstSix, theory, lab, FirstSix,

FirstSix[n_] :=

Position[Table[RandomVariate[FairDie], {n}], 6]〚1, 1〛 ;

theory =

Table[{i + 1, Probability[x ≤ i, x  GeometricDistribution[p]] // N}, {i, 0, 10}];

lab = Stl@StringForm"Probability a 6 will first appear on

the nth roll\nTheory(red) vs 1000 trial simulation";

results = Table[FirstSix[nRolls], {nTrials}];

fFirstSix = EmpiricalDistribution[results];

DiscretePlot[CDF[fFirstSix, x], {x, 0, 10}, PlotStyle → Black,

ExtentSize → Right, AxesLabel → {Stl["nRolls"], Stl[""]},

PlotLabel → lab, Epilog → {Red, PointSize[0.015], Point /@ theory}]

2 4 6 8 10
nRolls

0.2

0.4

0.6

0.8

ℙ

Probability a 6 will first appear on the nth roll

Theory(red) vs 1000 trial simulation

What is the expected number of rolls before a six is thrown? What is the standard deviation

about this number?

{Mean[GeometricDistribution[p]], StandardDeviation[GeometricDistribution[p]]}

-1 +
1

p
,

1 - p

p


MeanGeometricDistribution1  6,

StandardDeviationGeometricDistribution1  6 // N

{5., 5.47723}

What is the probability a 6 will appear on the 4th roll?

Probabilityx ⩵ 4, x  GeometricDistribution1  6 // N

0.0803755
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What is the probability a 6 will appear on or before the 4th roll?

Probabilityx <= 4, x  GeometricDistribution1  6 // N

0.598122

What is the probability no 6 will appear in the first 10 rolls?

Probabilityx > 10, x  GeometricDistribution1  6 // N

0.134588

How many other numbers are expected to be rolled before six appears twice?

The relevant distribution in this case is the negative binomial distribution. This is defined by

If n  is a positive integer, NegativeBinomialDistribution[n, p]  gives the distribution of the number of

failures in a sequence of trials with success probability p before n successes occur.

Modulep = 1  6, lab,

lab = Stl@StringForm[

"CDF of number of other numbers appearing\nbefore 1, 2, 3 sixes appear"];

DiscretePlot[{CDF[ NegativeBinomialDistribution[1, p], x],

CDF[ NegativeBinomialDistribution[2, p], x],

CDF[ NegativeBinomialDistribution[3, p], x]}, {x, 0, 10},

PlotLabel → lab, AxesLabel → {Stl["n"], Stl["CDF"]}]

2 4 6 8 10
n

0.2

0.4

0.6

0.8

ℙCDF

CDF of number of other numbers appearing

before 1, 2, 3 sixes appear

The probability that 5 numbers will be rolled before 6 appears twice is

Probabilityx <= 5, x  NegativeBinomialDistribution2, 1  6 // N

0.330204
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The expected number of “other numbers” before 2 sixes appear is

Mean NegativeBinomialDistribution2, 1  6,

StandardDeviation NegativeBinomialDistribution2, 1  6 // N

{10., 7.74597}

Another useful quantity is the distribution of the number of 6s that appear in a sequence of n rolls

Modulep = 1  6, nRolls = 30, fDist,

fDist = BinomialDistribution[nRolls, p];

DiscretePlot[PDF[fDist, x], {x, 0, 10}]

2 4 6 8 10

0.05

0.10

0.15

Modulep = 1  6, nRolls = 30, fDist,

fDist = BinomialDistribution[nRolls, p];

DiscretePlot[{PDF[BinomialDistribution[10, p], x],

PDF[BinomialDistribution[20, p], x], PDF[BinomialDistribution[30, p], x]},

{x, 0, 10}, Joined → True, AxesLabel → {Stl["n 6s"], Stl[""]},

PlotLegends → {"10 rolls", "20 rolls", "30 rolls"}]

2 4 6 8 10
n 6s

0.05

0.10

0.15

0.20

0.25

0.30

ℙ

10 rolls

20 rolls

30 rolls
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Chevalier de Mere’s problem

What is the probability an ace (a “1”) will appear in 4 rolls of a die? 

Probabilityx <= 4, x  GeometricDistribution1  6 // N

0.598122

What is the probability double aces (a “1”) will appear in 24 rolls of a die?

Probabilityx <= 24, x  GeometricDistribution1  36 // N

0.505532

The Chevalier was betting as if these two probabilities were the same — and losing. This is a seminal

problem in probability. De Mere (Antoine Gombaud) turned to Blaise Pascal, who enlisted Pierre de

Fermat and thus began the modern theory of probability (see Wikipedia for more).
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Module{lab},

lab =

Stl@StringForm["Number of rolls of 2 dice required\nto throw 1-1 with the same

probability\nas throwing 1 in 4 rolls of one die"];

DiscretePlotProbabilityx <= n, x  GeometricDistribution1  36, {n, 20, 40},

Epilog → {Red, Line[{{20, 0.5981224279835391`}, {40, 0.5981224279835391`}}]},

PlotStyle → Black, PlotLabel → lab 

25 30 35 40

0.50

0.55

0.60

0.65

Number of rolls of 2 dice required

to throw 1-1 with the same probability

as throwing 1 in 4 rolls of one die

Pepys problem posed to Newton

The history of this problem may be found in 

http://galton.uchicago.edu/faculty/stigler/pubs/IsaacNewtonProb-final.html

Newton got the right answer but the logic of his explanation was wrong! This is the only known work by

Newton involving probability.

Modulep = 1  6, nRolls = 6,

Probability[x ≥ 1, x  BinomialDistribution[nRolls, p]] // N

0.665102

Modulep = 1  6, nRolls = 12,

Probability[x ≥ 2, x  BinomialDistribution[nRolls, p]] // N

0.618667

8     Dice Probabilities 02-26-16.nb

copyright © N T Gladd 2016



Modulep = 1  6, nRolls = 18,

Probability[x ≥ 3, x  BinomialDistribution[nRolls, p]] // N

0.597346

I also write a simulation

Clear[RollnDice, MonteCarloDiceCountSixes];

RollnDice[n_] := Table[RandomInteger[{1, 6}], {n}];

MonteCarloDiceCountSixes[nDice_, nSixes_, nRolls_] :=

Module{rolls, counts, successes},

(* roll nDice dice, nRolls times *)

rolls = Table[RollnDice[nDice], {nRolls}];

(* count how many 6s occur on each roll *)

counts = Count[#, 6] & /@ rolls;

(* mark success as 1 if more than nSixes occurred *)

successes = If[# ≥ nSixes, 1, 0] & /@ counts;

(* Take the average to get the Monte Carlo estimate *)

Mean[successes] // N

Module[{theory, sim, results, nRolls = 10 000},

theory = {0.665102`, 0.618667`, 0.597345`};

sim = {MonteCarloDiceCountSixes[6, 1, nRolls],

MonteCarloDiceCountSixes[12, 2, nRolls],

MonteCarloDiceCountSixes[18, 3, nRolls]};

results = Transpose[{{"at least 1 in 6 rolls",

"at least 2 in 12 rolls", "at least 3 in 18 rolls"}, theory, sim}];

PrependTo[results, {"", "theory", "MonteCarlo"}];

LGrid[results, "Comparing theory with simulation"]]

Comparing theory with simulation
theory MonteCarlo

at least 1 in 6 rolls 0.665102 0.661
at least 2 in 12 rolls 0.618667 0.6215
at least 3 in 18 rolls 0.597345 0.5948

What is the probability of winning a craps hand?

Two dice are used in a craps game. The basic probability distribution can be represented by

crapsRoll = ProductDistribution[{DiscreteUniformDistribution[{1, 6}], 2}]

ProductDistribution[{DiscreteUniformDistribution[{1, 6}], 2}]

The probability of winning on the initial or “come out” roll (making 7 or 11)
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["7-11"] = Probability[Or[D1 + D2 == 7  D1 + D2 ⩵ 11], {D1, D2}  crapsRoll]

2

9

The probability of losing (“crapping out” by making 2 or 3 or 12) on the “come out” roll 

Probability[Or[D1 + D2 == 2  D1 + D2 ⩵ 3 D1 + D2 ⩵ 12 ], {D1, D2}  crapsRoll]

1

9

If one of the numbers 4,5,6 or 8,9,10 are rolled, that number becomes the “point” and the player must

then roll the “point” before rolling seven. The probability of rolling

 4 or 10 is  3/36

 5 or 9 is 4/36

 6 or 8 is 5/36

{{Probability[D1 + D2 == 4, {D1, D2}  crapsRoll],

Probability[D1 + D2 == 10, {D1, D2}  crapsRoll]},

{Probability[D1 + D2 == 5, {D1, D2}  crapsRoll],

Probability[D1 + D2 == 9, {D1, D2}  crapsRoll]},

{Probability[D1 + D2 == 6, {D1, D2}  crapsRoll],

Probability[D1 + D2 == 8, {D1, D2}  crapsRoll]}}


1

12
,

1

12
, 

1

9
,
1

9
, 

5

36
,

5

36


After establishing a point,  each successive roll consists winning by rolling the point, losing by rolling 7,

or continuing if some other number is rolled. The probability of winning on the nth roll (where n ≥ 0)

(point)(not 7 or point)n

The overall probability of rolling a point and then winning the point is

[point]
n=0

∞

[not 7 or point]n

For example, suppose the point is 4 (or 10), then ℙ[4] = 3/36, ℙ[not 4 and not 7] = 1 - 3/36 - 6/36 = 2/3.

Then, condition on the original point roll

point[4] =
3

36
×

n=0

∞ 3

36
1 -

3

36
-

6

36

n

,

point[5] =
4

36
×

n=0

∞ 4

36
1 -

4

36
-

6

36

n

, point[6] =
5

36
×

n=0

∞ 5

36
1 -

5

36
-

6

36

n




1

36
,

2

45
,

25

396

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Using the symmetry between 4/10, 5/9, 6/8, the overall probability of winning at craps is

["win hand"] = ["7-11"] + 2 point[4] + 2 point[5] + 2 point[6]

244

495

or

["win hand"] // N

0.492929

The odds favor the house, not the player.

What is the expected number of rolls for all sides of a die to appear?

Derivation of the answer.

On the first roll, one of the six numbers must have appeared. There is probability 5/6 that a second

number will appear on the next roll. But the expected number of rolls for an event with probability 5/6 to

occur is 6/5. After the second number has appeared, the probability that the 3rd number will appear on

the next roll is 4/6. The expected time for that event to occur is 6/4. Continuing this line of thought 

 = 1 + 6 / 5 + 6 / 4 + 6  3 + 6  2 + 6  1 // N

14.7

I first consider a simulation approach drawing on material from notebook Some Dice Problems 2
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Module[{nTrials = 10 000, nMax = 100, results, , theoryLine, lab},

results = Table[FirstOccurrenceOfAllSixNumbers[nMax], {nTrials}];

 = EmpiricalDistribution[results];

lab = Stl@StringForm[

"[roll on which all sides have appeared] = ``\ntheory = 14.7", N[Mean[]] ];

theoryLine = {Red, Line[{{14.7, 0}, {14.7, 100}}] };

DiscretePlot[PDF[, x], {x, 1, 50},

PlotStyle → Black, PlotLabel → lab, Epilog → theoryLine]]

0 10 20 30 40 50

0.02

0.04

0.06

0.08

[roll on which all sides have appeared] = 14.6867

theory = 14.7

Clear[FirstOccurrenceOfAllSixNumbers];

FirstOccurrenceOfAllSixNumbers[nMax_] :=

Module[{listOfRolls},

listOfRolls = RandomVariate[FairDie, nMax];

i = 5;

While[Length[Union[listOfRolls 〚1 ;; i〛]] < 6,

i = i + 1];

i]

What is the distribution of the highest value resulting from a throw of n dice?

Derivation: Consider the case n = 3.

Suppose the highest number rolled is 6. The probability that all numbers rolled are less than k is k3 63.

However, some of the die do not have a k, but a number between 1 and k -1.  The probability associ-

ated with such dice is (k - 1)3 63. So the probability that k is the highest number is

k3 63 - (k - 1)3 63

Clear[HighestNumberDistribution];

HighestNumberDistribution[k_] :=

k3

63
-

k - 13

63
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Module[{nDice = 3, nTrials = 1000, results, theoryLine, lab, },

results = Table[LargestNumber[nDice], {nTrials}];

 = EmpiricalDistribution[results];

lab =

Stl@StringForm["Distribution of highest number from `` dice\nBlack is theory,

red is simulation of `` trials", nDice, nTrials ];

theoryLine = {Red, Line[{{14.7, 0}, {14.7, 100}}] };

DiscretePlot[{HighestNumberDistribution[x] , PDF[, x]},

{x, 1, 6}, PlotLabel → lab, PlotStyle → {Black, Red},

AxesLabel → {Stl["highest number"], Stl[""]}]]

2 3 4 5 6
highest number

0.1

0.2

0.3

0.4

ℙ

Distribution of highest number from 3 dice

Black is theory, red is simulation of 1000 trials

Simulation

Clear[LargestNumber];

LargestNumber[nDice_] :=

Max@Table[RandomVariate[FairDie], {nDice}]

Mathematica example problem: Dice game involving value rolled.

Example from BinomialDistribution: Two players roll dice. If the total of both numbers is less than 10,

the second player is paid 4 cents; otherwise the first player is paid 9 cents. Is the game fair?:

The first player wins 9 cents with probability

Player1Wins = Module[{},

 = DiscreteUniformDistribution[{1, 6}];

Probability[roll1 + roll2 ≥ 10, roll1   && roll2  ]]

1

6

Then, the expected value of the game is
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Module{PayoffPlayer1 = 9, PayoffPlayer2 = 4},

PayoffPlayer1 Player1Wins - PayoffPlayer2 1 - Player1Wins

-
11

6

which is negative for player 1.

Yet, what is the probability that player 1 is ahead after n games? 

Player1Ahead = Module[{p = Player1Wins, PayoffPlayer1 = 9, PayoffPlayer2 = 4},

Probability[PayoffPlayer1 x > PayoffPlayer2 (n - x), x  BinomialDistribution[n, p]]]

6-n -5n + 6n 1 < n <
13

4

5-1+n × 6-n n n ⩵ 1

5
-1+n-Floor

4 n

13

× 6-n Binomialn, 1 + Floor 4 n

13


Hypergeometric2F11, 1 - n + Floor 4 n

13
, 2 + Floor 4 n

13
, -

1

5


n ≥
13

4

0 True

DiscretePlot[Player1Ahead, {n, 12},

PlotStyle → Black, AxesLabel → {Stl["nGames"], Stl["Ahead"]},

PlotLabel → Stl["Probability Player 1 is ahead after n games"]]

2 4 6 8 10 12
nGames

0.1

0.2

0.3

0.4

ℙAhead
Probability Player 1 is ahead after n games

What is the expected value of this game after n rolls?

Module{p = Player1Wins, PayoffPlayer1 = 9, PayoffPlayer2 = 4, mean, variance},

mean =

Expectation[PayoffPlayer1 x - PayoffPlayer2 (n - x), x  BinomialDistribution[n, p]];

variance = Expectation(x - mean)2, x  BinomialDistribution[n, p];

mean, variance 

-
11 n

6
,
1

6
5 n + 144 n2 
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Module{},

Plot-
11 n

6
, -

11 n

6
-

1

6
5 n + 144 n2 , -

11 n

6
+

1

6
5 n + 144 n2 , {n, 1, 20}

5 10 15 20

-80

-60

-40

-20

What are the minimum and maximum expected values of a roll of four dice?

This is a Mathematica example problem under Expectation/Applications

Module[{min, max, min, max, lab, g},

min = OrderDistribution[{DiscreteUniformDistribution[{1, 6}], 4}, 1];

min = N@Expectation[x, x  min];

lab = Stl@StringForm["Expected minimum = ``", min];

g[1] = DiscretePlot[PDF[min, x], {x, 1, 6}, PlotRange → All, PlotStyle → Black,

PlotLabel → lab, AxesLabel → {Stl["n"], Stl["[x = n]"]}];

max = OrderDistribution[{DiscreteUniformDistribution[{1, 6}], 4}, 4];

max = N@Expectation[x, x  max];

lab = Stl@StringForm["Expected maximum = ``", max];

g[2] = DiscretePlot[PDF[max, x], {x, 1, 6}, PlotRange → All, PlotStyle → Black,

PlotLabel → lab, AxesLabel → {Stl["n"], Stl["[x = n]"]}];

Grid[{{g[1], g[2]}}]]

2 3 4 5 6
n

0.1

0.2

0.3

0.4

0.5

ℙ[x = n]
Expected minimum = 1.7554

2 3 4 5 6
n

0.1

0.2

0.3

0.4

0.5

ℙ[x = n]
Expected maximum = 5.2446

The following is a tricky followup question.  What is the expected value of  the three highest largest

values. Note

(x1 + x2 + x3 + x4) = (x1) + (x2) + (x3) + (x4)
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or

(x1 + x2 + x3 + x4) - (x1) = (x2) + (x3) + (x4)

Expectation[x1 + x2 + x3 + x4, {x1, x2, x3, x4} 

ProductDistribution[{DiscreteUniformDistribution[{1, 6}], 4}]] - Expectation[

x, x  OrderDistribution[{DiscreteUniformDistribution[{1, 6}], 4}, 1]] // N

12.2446

What is the expected sum of 2 dice, x and y, conditional on the requirement that 

y ≤ 3?

First the unconditional expected value

Expectation[x + y,

{x  DiscreteUniformDistribution[{1, 6}], y  DiscreteUniformDistribution[{1, 6}]}]

7

Then the conditional expected value.

Expectation[x + y  y ≥ 3,

{x  DiscreteUniformDistribution[{1, 6}], y  DiscreteUniformDistribution[{1, 6}]}]

8

How many dice must be rolled to have a 95% probability of rolling a six?

The number of dice rolled to obtain a six is the same as the number of rolls required with a single die.

The process is given by a Geometric distribution. As illustrated in the table, rolling 16 dice generates a

probability of 95.49%.
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Modulep = 1  6, , result, info,

 = GeometricDistribution[p];

result = Table[{x, CDF[, x] // N}, {x, 10, 20}];

info = {#〚1〛, #〚2〛} & /@ result;

PrependTo[info, {"n dice rolled", "[6 appears]"}];

LGrid[info, "Probability of rolling a six with n dice"] 

Probability of rolling a six with n dice
n dice rolled ℙ[6 appears]

10 0.865412
11 0.887843
12 0.906536
13 0.922113
14 0.935095
15 0.945912
16 0.954927
17 0.962439
18 0.968699
19 0.973916
20 0.978263

Modulep = 1  6, ,

 = GeometricDistribution[p];

DiscretePlot[CDF[, x], {x, 0, 20}, PlotStyle → Black,

ExtentSize → Right, AxesLabel → {Stl["nRolls"], Stl[""]},

Epilog → {Red, Line[{{0, 0.95}, {20, 0.95}}] }]

5 10 15 20
nRolls

0.2

0.4

0.6

0.8

ℙ

This can be solved another way. The probability that there are no sixes in n rolls is

no-sixes =
5

6

n

so the probability that there is at least 1 six is

at least one six = 1 -
5

6

n

Dice Probabilities 02-26-16.nb     17

copyright © N T Gladd 2016



Clear@

w[1] = Solve ⩵ 1 - (5 / 6)n, n〚1, 1〛

n → ConditionalExpression
2 ⅈ π C[1]

Log 6

5


+

Log 1

1-


Log 6

5


, C[1] ∈ Integers

w[2] = w[1] /. C[1] → 0

n →

Log 1

1-


Log 6

5


w[3] = w[2] /.  → 0.95

n → 16.431

How many dice must be rolled to have a 95% probability of rolling a one and a 

two?

A simulation warmup.
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Module{nDiceMax = 10, nTrials = 10 000, results, theory, lab, , g},

(* see below for theory *)

theory = Tablen, 1 -
2 × 5n - 4n

6n
, {n, 2, nDiceMax} // N;

results = TablenDice,

Count[ProbabilityOneAndTwo[nDice, nTrials], 1]  nTrials // N,

{nDice, 2, nDiceMax};

lab = Stl@StringForm["Probability that 1 and 2 appear in roll of

n dice\nTheory (Black line) Simulation (``)", nTrials];

ListPlot[results, Epilog → {Black, Line[theory]} , PlotLabel → lab,

AxesLabel → {Stl["nDice"], Stl[""]}]

2 4 6 8 10
nDice

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ℙ

Probability that 1 and 2 appear in roll of n dice

Theory (Black line) Simulation (10000)

The problem is solved by counting. But, the exclusion principle must be used. Not having performed

such calculations in a long time, I struggled a bit. The web site http://math.stackexchange.com/question-

s/627848/probability-of-specific-result-of-dice-rolling-using-inclusion-exclusion-princip   discusses  an

analogous problem that made the solution problem clear.

Let A1 and A2 be the events that 1 and 2 never appear in a roll of n dice. The desired probability that

both 1 and 2 appear is the probability of the event that the complement of A1⋃ A2 occur, Thus

(A1⋃ A2)
C = 1 - [(A1⋃ A2)] = 1 - ([A1] + [A2] - [A1⋂ A2])

The quantities on the rhs can be calculated. 

[A1] =
5n

6n
1 does not appear

[A2] =
5n

6n
2 does not appear

[A1⋂ A2] =
4n

6n
neither 1 or 2 appear

So
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(A1⋃ A2)
C = 1 -

2 × 5n - 4n

6n

If I didn’t know the probabilities for A1, etc.  I could used Mathematica to calculate them. Consider the

example of 2 dice. Let A1 be the event that no 1 appears. Although this is easily determined to be 5n

/6n, I can use Mathematica to perform the counting.

["A1"] = Length[Tuples[{2, 3, 4, 5, 6}, 2]]  62

25

36

["A2"] = Length[Tuples[{1, 3, 4, 5, 6}, 2]]  62

25

36

The desired quantity is the probability of the complement of the event A1  ⋃  A2. 

["A1 ⋂ A2"] = Length[Tuples[{3, 4, 5, 6}, 2]]  62

4

9

The exclusion principle

A1 ⋃ A2 = A1 + A2 - A1 ⋂ A2

The intersection of A1 and A2 is the event that neither 1 or 2 appears

["A1 ⋃ A2"] = ["A1"] + ["A2"] - ["A1 ⋂ A2"]

17

18

Then, the probability that at least a 1 and a 2 appear is the complement of the

"(A1 ⋃ A2)
C" = 1 - ["A1 ⋃ A2"]

1

18

This argument generalizes for n rolls to 

"(A1 ⋃ A2)
C" = 1 -

5n

6n
+

5n

6n
-

4n

6n

1 +
2

3

n

-
5

3

n

21-n
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The equation that determines how many dice must be rolled to be 95% confident that a 1 and a 2 will

appear as

eqn = 1 -
5n

6n
+

5n

6n
-

4n

6n
⩵ 0.95

1 +
2

3

n

-
5

3

n

21-n ⩵ 0.95

This must be solved numerically.

FindRoot[eqn, {n, 10}]〚1〛

n → 20.2025

So 21 dice must be rolled.

The case of how many rolls are required for a 1, a 2 and a 3 are required could be solved, in an analo-

gous manner, by calculating the rhs of 

["A1 ⋃ A2 ⋃ A3"] = ["A1"] + ["A2"] + ["A3"] -

["A1 ⋂ A2"] - ["A1 ⋂ A3"] - ["A2 ⋂ A3"] - ["A1 ⋂ A2 ⋂ A3"]

Functions

Clear[ProbabilityOneAndTwo, ContainsOneAndTwo];

ProbabilityOneAndTwo[nDice_, nTrials_] :=

Table[ContainsOneAndTwo[nDice], {nTrials}];

ContainsOneAndTwo[nMax_] :=

Module{listOfRolls, listOfCounts, firstOccurrence},

listOfRolls = RandomVariate[DiscreteUniformDistribution[{1, 6}], nMax];

(*Print[listOfRolls];*)

{Count[listOfRolls, 1], Count[listOfRolls, 2]};

IfCount[listOfRolls, 1] ≥ 1 && Count[listOfRolls, 2] ≥ 1, 1, 0

How many dice should be rolled to maximize the probability of rolling exactly one 

6, exactly 2 6s, etc?

Clear[die];

die = DiscreteUniformDistribution[{1, 6}];

Probability[x ⩵ 6, x  die] // N

0.166667
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Probabilityx1 == 6 && x2 ≠ 6   x1 ≠ 6 && x2 == 6 , {x1  die, x2  die} // N

0.277778

In general, the probability of rolling 1 6 with the first of two die is 5
6
 1

6
 and with the second of two die is  

2
5

36
// N

0.277778

With n dice 

w[1] = n
1

6

5

6

n-1

5-1+n × 6-n n

DiscretePlotn
1

6

5

6

n-1

, {n, 1, 10}, PlotStyle → Black,

AxesLabel → {Stl["nDice"], Stl["[one six]"]}

2 4 6 8 10
nDice

0.20

0.25

0.30

0.35

0.40

ℙ[one six]

Similarly, the probability of rolling exactly 2 sixes is

w[2] = Binomial[n, 2]
1

6

2 5

6

n-2

2-1-n × 3-n × 5-2+n -1 + n n
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DiscretePlotBinomial[n, 2]
1

6

2 5

6

n-2

, {n, 2, 20},

PlotStyle → Black, AxesLabel → {Stl["nDice"], Stl["[two sixes]"]}

5 10 15 20
nDice

0.05

0.10

0.15

0.20

0.25

0.30

ℙ[two sixes]

Show that the probability of throwing 14 is the same with 3 dice or 5 dice

Clear[die];

die = DiscreteUniformDistribution[{1, 6}];

Probability[x1 + x2 + x3 == 14, {x1  die, x2  die, x3  die}]

5

72

Probability[x1 + x2 + x3 + x4 + x5 == 14,

{x1  die, x2  die, x3  die, x4  die, x5  die, x6  die}]

5

72
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Module[{result3, result5},

result3 = Table[{n, Probability[x1 + x2 + x3 == n, {x1  die, x2  die, x3  die}]},

{n, 3, 18}];

result5 = Table[{n, Probability[x1 + x2 + x3 + x5 + x5 == n,

{x1  die, x2  die, x3  die, x4  die, x5  die}]}, {n, 3, 40}];

ListPlot[{result3, result5}]]

10 20 30 40

0.02

0.04

0.06

0.08

0.10

0.12

6 dice are rolled. What is the distribution of the sum of their faces?

This problem is solved using the probability generating function pgf for a fair die. The pgf is a polyno-

mial with coefficients equal to the probability of the outcome

pgfDie =
1

6
x +

1

6
x2 +

1

6
x3 +

1

6
x4 +

1

6
x5 +

1

6
x6

x

6
+
x2

6
+
x3

6
+
x4

6
+
x5

6
+
x6

6

The probability of the outcome of rolling 6 dice are the coefficients of the  product (convolution) of the

one die generating function

distRoll6 = pgfDie6 // Expand

x6

46 656
+

x7

7776
+

7 x8

15 552
+

7 x9

5832
+
7 x10

2592
+
7 x11

1296
+
19 x12

1944
+
7 x13

432
+
43 x14

1728
+
833 x15

23 328
+
749 x16

15 552
+

119 x17

1944
+
3431 x18

46 656
+
217 x19

2592
+
469 x20

5184
+
361 x21

3888
+
469 x22

5184
+
217 x23

2592
+
3431 x24

46 656
+
119 x25

1944
+

749 x26

15 552
+
833 x27

23 328
+
43 x28

1728
+
7 x29

432
+
19 x30

1944
+
7 x31

1296
+
7 x32

2592
+
7 x33

5832
+

7 x34

15 552
+

x35

7776
+

x36

46 656

distRoll6 = Transpose[{Range[0, 36], CoefficientList[distRoll6, x]}];
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ListPlot[distRoll6, PlotStyle → Black, AxesLabel → {Stl["n"], Stl["[n]]"]}]

5 10 15 20 25 30 35
n

0.02

0.04

0.06

0.08

ℙ[n]]

The expectation is given by

Sumi - 1 distRoll6 〚i, 2〛, {i, 1, 37}

21

What is the probability of rolling the same number exactly three times with 5 dice.

This problem comes from 

http://magoosh.com/gmat/2012/gmat-probability-difficult-dice-questions/

Clear[die];

die = DiscreteUniformDistribution[{1, 6}];

Specific cases can be calculated using

Probability[x1 ⩵ 1 && x2 ⩵ 1 && + x3 ⩵ 1 && x4 ≠ 1 && x5 ≠ 1,

{x1  die, x2  die, x3  die, x4  die, x5  die}]

25

7776

The general solution involves combinatorics and logic. The probability of throwing the number 1 3 times

with 3 dice is

111
(3)

=
1

6

3

The probability of throwing any of the numbers 1, 2, ...,6 is

111,222,...,666
(3)

= 6 111 =
1

6

2
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But there are 5 dice and Binomial[5, 3] = 10 ways of choosing the same three particular dice out of 5.

111,222,...,666
(5)

= 
5
3


1

6

2

Since exactly 3 occurrences of the same number is called for, the other two numbers must not be equal

to the number that occurred 3 types. The probability that the remaining two numbers are different is  

xx =
5

6

2

So the final answer is (with a = b = c, d ≠ a, e ≠ a) 

abcde
(5)

= 
5
3


1

6

2 5

6

2

Binomial[5, 3] 1  6
2
(5 / 6)2

125

648

Binomial[5, 3] 1  6
2
(5 / 6)2 // N

0.192901
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